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Prof. Thiago Gamboa Ritto
Co–Advisor

Universidade Federal do Rio de Janeiro

Prof. Member 1
Pontif́ıcia Universidade Católica do Rio de Janeiro
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Dr. Member 3
Pontif́ıcia Universidade Católica do Rio de Janeiro
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Abstract

Sacramento, Victor; Sampaio, Rubens; Ritto, Thiago. Integrity of
an Offshore Structure Subjected to Waves. Rio de Janeiro,
2014. 77p. Tese de Doutorado — Department of Mechanical Engi-
neering, Pontif́ıcia Universidade Católica do Rio de Janeiro.

A fatigue analysis procedure was developed to evaluate the structural

integrity of a drilling tower welded to an offshore platform. The tower is

built from welded steel plates and it has uncertainties on the thickness

of the plates and on the welds. The weld between the tower and the

offshore platform is critical for fatigue and the knowledge of the probability

distribution of the stress cycles on this critical point of the structure is

necessary to estimate its fatigue life. The stresses on this point are given by

the dynamics of the tower and the excitation of the tower is given by the

dynamics of the platform (base excitation) which in turn is given by the

wave loads.

Keywords
Random ocean waves. Karhunen Loève basis. Reduced-order model.

Dynamics of offshore structures. Fatigue damage.



Resumo

Sacramento, Victor; Sampaio, Rubens; Ritto, Thiago. Integridade
de uma Estrutura Offshore Sujeita a Ondas. Rio de Janeiro,
2014. 77p. Tese de Doutorado — Departamento de Mechanical
Engineering, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Um procedimento para análise da fadiga...

Palavras–chave
Ondas oceânicas estocásticas. Base de Karhunen Loève. Modelo de

ordem reduzida. Dinâmica de estruturas offshore. Dano em fadiga.
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1
Introduction

An offshore platform and all of its installed equipments should be designed for

a long life span. Therefore, it is necessary to evaluate the fatigue resistance

of several items during design stage. To evaluate this fatigue resistance the

designer needs to obtain the dynamic response of the platform to all the exter-

nal loads and thereafter to obtain the base excitation over these equipments.

Given the base excitation, the dynamic response of the equipments can be

calculated and the stress time history on the critical for fatigue points can be

obtained and then the fatigue resistance can be determined. During all this

process of determining the fatigue resistance of these equipments several as-

sumptions have to be made by the designer and the uncertainty on them have

to be considered.

The evaluation of structural integrity is a required step for the design

of any offshore structure. The dynamic response of the structure due to

external loads need to be investigated on early stages of the design process

in order to avoid significant changes afterwards. The ocean waves are a main

source of external loads and as the structure will be subjected to several

different sea states during the working life of the equipment, several sea surface

elevations and dynamic responses simulations should be accomplished during

such investigation phase. Any reduction on the computational effort for these

simulations will save working time.

Many different research areas require some source of simulation of ocean

waves and structural integrity evaluation. Langley [21], investigated statistical

techniques for estimating the reliability of offshore structures. He studied the

reliability of an equipment modeled as a single degree of freedom system based

on the available information for the intended location. Kukkanen [19] presented

a procedure for the fatigue analysis of hull structures of ships. A spectral

method has been applied to determine stress responses in different short-

term condition and the long-term predictions for stress responses have been

determined by taking into account the operational conditions of the ship. The

estimative of fatigue life of the structure has been determined using Miner’s

fatigue accumulation hypothesis together with probabilistic models of stress
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ranges and number of stress cycles. Pérez [29] was interested on testing of

applications of ship motion control strategies and needed accurate and simple

mathematical models to describe the exerted loads and motions of vehicles.

After simulating the sea state for a given wave spectrum the results were

related to the ship motion using the Response Amplitude Operators (RAO)

for the specific ship. Kukkanen [20] presented a fatigue analysis procedure

for offshore floating structures based on the separation of hydrodynamic load

and structural responses, on the effective fatigue load concept and using

response interpolation in order to simplify the fatigue analysis calculating

just a few directional fatigue effective load cases. Such calculation can be

accomplished in early stages of the project and can be easily updated during

the development of the project. Forristall [10] needed to define the height of

the deck of oil platforms and obtained statistics for the maximum crest over

an area using a combination of analytical theory and numerical simulations.

Forristall [11] investigated the damage caused by hurricanes Ivan, Katrina and

Rita to deep water facilities and concluded that crest heights calculated using

standard theories hardly could have caused such damage and calculations of

the maximum crest height over the area of the deck are able to explain it.

Forristall [12], studied the influence of the diffraction and radiation of the

incident waves due to the large columns of a Tension Leg Platform (TLP)

and estimated the maximum crests under the structure. Nielson [28] presented

a method for determination of multiaxial load segments from original service

histories and proposed a rainflow procedure for stress cycles counting that will

be used in this work. In all these works some kind of ocean wave’s simulation

and structural integrity evaluation were needed. Sacramento et al [31] proposed

a simplified strategy to compute the fatigue damage on a drilling tower welded

to an offshore platform using the power spectral density of the wave loads

and the probability distribution of the occurrence of sea states. In the present

work this fatigue damage will be determined considering the uncertainty on

the thickness of the plates and on the thickness of the welds as well.

This work is organized as follows. Chapter 2 presents the conceptual

model for the sea surface elevation. On Chapter 3 it is shown the evaluation

the dynamics of the platform. The dynamic response of the platform will be

used on Chapter 4 to evaluate the dynamics of the drilling tower. The fatigue

analysis is accomplished on Chapter 5. On Chapter 6 the uncertainties on the

model and on the method are discussed. Results are shown on Chapter 7 and

conclusions are drawn on Chapter 8. An overview of the procedure can be seen

on Fig. 3.5.
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Figure 1.1: Overview of the procedure



2
Sea Surface Elevation

Ocean waves are random in terms of both time and space [29]. It is assumed

that the variations of the stochastic characteristics of the sea are much slower

than the variations of the sea surface itself. Therefore the elevation of the sea at

a position x, y, given by ζ(x, y, t), can be considered a realization of a stationary

process. The following simplifying assumptions about the underlying model are

usually made

– The observed sea surface, at a certain location and for short periods of

time, is considered a realization of a stationary and homogeneous, zero

mean Gaussian stochastic process.

– Under a Gaussian assumption, the process, in a statistical sense, is

completely characterized by the power spectral density function S

The validity of these assumptions have been investigated via analysis of

time series recorded from wave riding buoys in the North Atlantic Ocean and

it has been reported that

– For low and moderate sea states, significant wave height (h1/3) lower than

4 m, the sea can be considered stationary for periods over 20 min. For

more severe sea states, stationarity can be questioned even for periods of

20 min.

– For low to medium states, h1/3 < 8 m, Gaussian models are still accurate

but deviations from Gaussianity slightly increase with the increasing

severity of the sea state.

In this chapter the steps to obtaining the sea surface elevation will be

explained
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Figure 2.1: Obtaining the sea surface elevation

2.1
Regular Waves

A conceptual model to describe the sea surface elevation is given by the sum of a

large number of essentially independent regular (sinusoidal) contributions with

random phases. In this representation, the sea surface elevation at a location

x, y with respect to a X, Y , and Z global coordinate system is given by [29]

ζ(x, y, t) =
N∑
i=1

ζi(x, y, t) =
N∑
i=1

ζ̄icos (kixcosχ+ kiysinχ+ ωit+ θi) (2.1)

where ζi(x, y, t) is the contribution of the regular or harmonic traveling wave

components i progressing at an angle χ with respect to the X direction and

with a random phase θi. The parameters ki (wave number), ωi (wave frequency

seen from a fixed position) and ζ̄i (constant wave amplitude) characterize each

component. For each realization, the phase angle θi of each component is chosen

to be a random variable with uniform distribution on the interval [−π, π]. This

choice ensures the stationarity of ζi(x, y, t) [29].

For each regular wave component i, the velocity with which the wave

crest moves relative to the ground, the phase velocity, is given by [29]

ci =

√
gλi
2π

, i = 1, 2, . . . , N (2.2)
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where g is the gravity acceleration and λi is the wavelength of the component

i. The wave number is given by [29]

ki =
2π

λi
, i = 1, 2, . . . , N (2.3)

and the wave frequency is given by [29]

ωi =
√
gki =

g

ci
, i = 1, 2, . . . , N (2.4)

The Eq. 2.4 is known as the dispersion of gravity waves and establishes that

the phase velocity is inversely proportional to its frequency. This means that

long waves propagate faster than short ones. Considering that the observations

are made at the origin of the reference frame and that the waves come from

an angle of incidence χ = 0 with respect to the reference frame. In this case,

the Eq. 2.1 becomes [29]

ζ(t) =
N∑
i=1

ζi(t) =
N∑
i=1

ζ̄icos (ωit+ θi) (2.5)

2.2
Irregular Waves

Since observed waves are not regular the wave height and frequency are not

easily defined. Therefore the wave height spectral density is utilized for a

statistical description of the wave elevation. The sea surface elevation can be

related to its Fourier transform by [4]

ζ(t) =
1

2π

∫ ∞
−∞

X(ω)exp(−iωt)dω (2.6)

Considering the sea surface elevation an ergodic process its mean-square

value can be approximated by the time average over a long period of time [4]

E
{
ζ2(t)

}
= lim

Ts→∞

1

Ts

1

2π

∫ ∞
−∞
|X(ω)|2dω (2.7)

The power spectral density (spectrum) is defined as [4]

Sζζ(ω) =
1

2πTs
|X(ω)|2 (2.8)

and the mean-square of sea surface elevation is given by [4]

E
{
ζ2(t)

}
=

∫ ∞
−∞

Sζζ(ω)dω (2.9)

The sprectrum is related to the autoorrelation function by the Wiener-

Khinchine relations [4]

Sζζ(ω) =
1

2π

∫ ∞
−∞

Rζζ(τ)exp(−iωτ)dτ (2.10)
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Rζζ(τ) =

∫ ∞
−∞

Sζζ(ω)exp(iωτ)dω (2.11)

For a zero-mean process the mean-square value equals the variance. At

any particular wave frequency ωi the variance of that component within a band

∆ω centered at ωi is approximated by [29]

var [ζi(t)] =
1

2
ζ̄2i ≈

∫ ωi+
∆ω
2

ωi−∆ω
2

Sζζ(ω)dω (2.12)

and the amplitudes of wave components can be approximated by [29]

ζ̄i ≈

√√√√2

∫ ωi+
∆ω
2

ωi−∆ω
2

Sζζ(ω)dω (2.13)

For ocean applications a one-sided spectrum given in Hertz (Hz) is often

used. For this one-sided spectrum a superscript o is given and it can be obtained

from the two-sided spectrum by the relation [4]

Soζζ(ω) = 2Sζζ(ω), ω ≥ 0 (2.14)

The two-sided spectrum given in radians can be transformed to the

spectrum given in Hertz by the relation

Sζζ(f) = 2πSζζ(ω) (2.15)

and the two-sided spectrum given in radians can be transformed to the one-

sided spectrum given in Hertz by the relation

Soζζ(f) = 4πSζζ(ω), f, ω > 0 (2.16)

2.3
Short-term Statistics

An irregular sea state is described by one of its statistics named significant

wave height. This statistic is the average height of the highest one-third of all

waves and it is found that observed wave height is consistently very close to

the significant wave height [4].

When describing short-term statistics two assumptions are made, namely,

stationarity and ergodicity. These assumptions are valid only for short time

intervals. The wave elevation is assumed to be weakly stationary so that its

autocorrelation is a function of time lag only. As a result, the mean and the

variance are constant and the spectral density is invariant with time and the

significant wave heigth and the significant wave period are constant when

considering short term statistics. In this case the individual wave height and

wave period are the random variables.
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The rate at which the random process ζ crosses an elevation represented

by the random variable Z with a positive slope is given by [4]

νz+ =

∫ ∞
0

vfζζ̇(z, v)dv (2.17)

where fζζ̇ is a joint probability density function. The expected time of the first

up-crossing is given by [4]

E{T} = 1/νz+ (2.18)

The probability density function of the maxima is given by [4]

fA(a) =

∫ 0

−∞−wfζζ̇ζ̈(a, 0, w)dw∫ 0

−∞wfζ̇ζ̈(0, w)dw
(2.19)

where fζζ̇ζ̈ is a joint probability density function. If ζ is a Gaussian process the

joint probability density functions are [4]

fζζ̇(x, ẋ) =
1

2πσζσζ̇
exp

−1

2

(
x

σζ

)2

− 1

2

(
ẋ

σζ̇

)2
 ,

−∞ < x <∞,−∞ < ẋ <∞ (2.20)

and [4]

f
ζ

˙
ζζ̈

(x, ẋ, ẍ) =
1

(2π)3/2|M |1/2
exp

[
−1

2
({x} − {µζ})T [M ]−1 ({x} − {µζ})

]
(2.21)

where

[M ] =


σ2
ζ 0 σ2

ζ̇

0 σ2
ζ̇

0

σ2
ζ̇

0 σ2
ζ̈

 (2.22)

and

x− µζ =

 x− µζ
ẋ− µζ̇
ẍ− µζ̈

 (2.23)

Then, for a stationary Gaussian process, the up-crossing rate is given by

[4]
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ν+z =

∫ ∞
0

fζζ̇(Z, ẋ)ẋdẋ

=
1

2πσζσζ̇
exp

[
−1

2

(
Z

σζ

)2
]∫ ∞

0

exp

−1

2

(
ẋ

σζ̇

)2
 ẋdẋ

=
σζ̇

2πσζ
exp

[
−1

2

(
Z

σζ

)2
]

(2.24)

and the probability density function of maxima is given by the Rice density

function

fA(a) =

√
1− α2

√
2πσζ

exp

(
−a2

2σ2
ζ (1− α2)

)

+a
α

σ2
ζ

Φ

(
aα

σζ
√

(α2 − 1)

)
exp

(
−a2

2σ2
ζ

)
(2.25)

where Φ is the cumulative distribution function of the standard normal random

variable given by

Φ(x) =
1√
2π

∫
−∞

xexp
(
−z2/2

)
dz (2.26)

and α is the irregularity factor, equivalent to the ratio of the number of zero

up-crossings to the number of peaks. This factor ranges from 0 to 1 and it is

also equal to

α =
σ2
ζ̇

σζσζ̈
(2.27)

If ζ is a broad-band process then α = 0 and the Rice distribution is

reduced to the Gaussian probability density function given by

fA(a) =
1√

2πσζ
exp

(
−a2

2σ2
ζ

)
for −∞ < a <∞ (2.28)

If ζ is a narrow-band process it is guaranteed that it will have a peak

whenever it crosses its mean. In this case the irregularity factor is close to

unity and the Rice distribution is reduced to the Rayleigh probability density

function given by

fA(a) =
a

σ2
ζ

exp

(
−a2

2σ2
ζ

)
for 0 < a <∞ (2.29)

That means that the amplitudes of a narrow-band stationary Gaussian process

are distributed according to the Rayleigh distribution.
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The maxima of ζ, A, are the amplitudes of the sea surface elevation. The

wave height, H = 2A is then distributed according to [4]

fH(h) = fAH/2
dA

dH

=
h

4σ2
ζ

exp

(
−1

2

h2

4σ2
ζ

)
for 0 < h <∞

(2.30)

For any given wave the probability that the height is less than h (the cumulative

distribution) is

fH(h) = 1− exp

(
−1

2

h2

4σ2
ζ

)
for 0 < h <∞ (2.31)

If ζ is a stationary narrow-band process so that the peaks are distributed

according to the Rayleigh distribution the root-mean square of wave height is

given by √
E{H2} =

∫ ∞
0

h2fH(h)dh = 2
√

2σζ (2.32)

In addition, it can be shown that the average wave height is given by

HO ≡ E{H} =
√

2πσζ (2.33)

and the significant wave heights is given by

HS ≡ E{H1/3} = 4σζ (2.34)

where E{H1/3} is the expectation of the highest one-third of the waves.

2.4
Wave Spectrum

In any particular sea state, the sea surface elevation presents irregular char-

acteristics. After the wind has blown constantly for a certain period of time

the sea elevation surface becomes stationary. In this case the sea is referred

to as fully-developed. If the irregularity of the observed waves is only in the

dominant wind direction so that there are mainly uni-dimensional wave crests

with carrying separation and remaining parallel to each other the sea is re-

ferred to as a long-crested irregular sea, [29]. For a fully-developed sea the

Pierson-Moskowits (PM) spectrum for the wave amplitudes in terms of the

wind velocity is given by [4]

Soζζ(ω) =
8.1× 10−3g2

ω5
exp

(
−0.74

(
g

Vw

)4

ω−4

)
(2.35)
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where g is the gravitational constant and Vw is the wind speed at a height

of 19.5m above the still water. The modal frequency, ωm, is the one at which

the spectrum is maximum. The PM spectrum can be written in terms of the

modal frequency, the one at which the spectrum is the maximum. In this case

it is given by

Soζζ(ω) =
8.1× 10−3g2

ω5
exp

(
−1.25ω4

mω
−4) (2.36)

In some cases it may be necessary to express the spectrum in terms of

the significant wave height. For a narrow band Gaussian process the significant

wave height is related to the standard deviation of the sea surface elevation by

Eq. 2.34, then the spectrum is given by [4]

Soζζ(ω) =
8.1× 10−3g2

ω5
exp

(
−0.0324

(
g

HS

)2

ω−4

)
(2.37)

The PM spectrum is applicable for deep water, unidirectional seas, fully

developed and local-wind generated with unlimited fetch and was developed for

the North Atlantic. The effect of swell is not accounted for in this spectrum anf

it is found that even though it is derived for the North Atlantic the spectrum

is valid for other locations [4].

2.5
Long-term Statistics

In order to predict the possible sea surface elevations that the offshore platform

can be subjected to it is necessary to know the values of significant wave

heights and its probability of occurrence for the location where it will be

installed. For long-term statistics the significant wave height follows the

Weibull distribution closely. The probability density function for a three

parameter Weibull distribution is given by [4]

f (HS) =
m

β

(
Hs − γ
β

)m−1
exp

(
−
(
HS − γ
β

)m)
γ < HS (2.38)

and the probability distribution function is given by

F (HS) = 1− exp

(
−
(
HS − γ
β

)m)
γ < HS (2.39)

where γ, β and m are the Weibull parameters that can be determined by

least-squares methods, provided that significant wave height data over a long

period of time are available. The National Data Buoy Center (NBDC) provides

historical data about significant wave height collected from several stations all

over the world.
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Most of the commonly used probability density functions can be obtained

from Weibull’s equation by the proper choice of the parameters in that equation

[27]. The Rayleigh probability density function for the significant wave height

is given by [27]

f(HS) =
2HS

H2
rms

exp

(
−
(
HS

Hrms

)2
)

(2.40)

and by comparing the expressions in Eqs. 2.38 and 2.40 it can be noted that

the Rayleigh probability density function corresponds to the parametric values

of m = 2, γ = 0 and β = Hrms. The mean wave height is given by

Havg =

∫ ∞
0

f(HS)HSdHS (2.41)

and considering the Weibull distribution for the significant wave height the

mean value is given by

Havg = βΓ

(
m+ 1

m

)
+ γ (2.42)

where Γ is the gamma function. The mean square significant wave height is

given by

H̄2 =

∫ ∞
0

f(HS)H2
SdHS (2.43)

and considering the Weibull distribution for the significant wave height the

mean square and the root-mean-square are given by

H̄2 = H2
rms = β2Γ

(
m+ 2

m

)
+ 2γβΓ

(
m+ 1

m

)
+ γ2 (2.44)

Etube [9] states that for locations at North Sea the probability distribu-

tion function of significant wave height can be given by the Gumbel distribution

Fg(Hs) = ηexp

(
−exp

(
α−Hs

λ

))
(2.45)

and the probability density function is given by

fg(Hs) =
η

λ
exp

(
α−Hs

λ

)
exp

(
−exp

(
α−Hs

λ

))
(2.46)

where α, λ and η are site-dependent parameters

2.6
Reduced-order Model

The use of a sea state representation with a large number of uncorrelated

sources of uncertainty in nonlinear wave body interactions leads to a compu-

tational task which may become prohibitively expensive when the statistics

of extreme loads and responses are necessary [34]. Given the power spectral

density of the signal an optimal set of orthogonal functions, a basis, exists
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that fits the signal with the minimum number of uncorrelated sources of un-

certainty [34]. This basis follows from the spectral decomposition theorems of

Loève (1945) and Karhunen (1947) [2]. The Karhunen-Loève (KL) is an opti-

mal basis to construct a reduced order model of the sea surface elevation in the

sense that the projection on to the subspace generated by this basis contains

the maximal amount of energy for a given number of trial functions [23]. An

application for reduced-order models can be found on [30].

The use of KL basis to represent a stochastic process is based on two

assumptions, the process is stationary in time and ergodic. For long periods of

time the sea surface elevation is not a stationary process and as the statistical

distribution of Hs is normally determined by measuring the value of Hs at three

hourly interval over an extended period, [21], the process can be considered

stationary only for a three hour period.

Considering the sea surface elevation at the X = Y = 0 coordinates the

autocorrelation function of the signal is given by [34]

R(τ) = E[ζ(t)ζ(t+ τ)] = R(−τ) (2.47)

Since the two-sided power spectral density of the signal ζ(t) is the Fourier

transform of the autocorrelation function, Eqs. 2.10 and 2.11, the following

standard relation holds [34]

σ2
ζ = R(0) (2.48)

Considering a signal over a finite time interval (−T, T ) the Karhunen-

Loève theorem states that [34]

ζ(t) =
∞∑
n=0

αnfn(t) for − T < t < T (2.49)

Since ζ is a stochastic process, the coefficients αn are independent random

variables such that [34]

E
(
α2
n

)
= κn (2.50)

and
E (αmαn) = 0 for m 6= n (2.51)

The deterministic functions fn are solutions of an eigenvalue problem cast

in the form of an integral equation of the first kind with the autocorrelation

function as its kernel [34]∫ T

−T
R(t− τ)fn(τ)dτ = κnfn(t) for n = 0, 1, . . . (2.52)∫ T

−T
fm(τ)fn(τ)dτ =

{
1, m = n

0, m 6= n
(2.53)
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R(t− τ) =
∞∑
n=0

κnfn(t)fn(τ) (2.54)

R(t) =
∞∑
n=0

κnfn(0)fn(t) (2.55)

σ2
ζ = R(0) =

∞∑
n=0

κnfn(0)fn(0)2 (2.56)

αn =

∫ T

−T
ζ(t)fn(t)dt (2.57)

It can be observed that [34] [2]

– The independent random variables αn are Gaussian if the signal ζ is

Gaussian, which is often the case with ocean waves

– The eigenfunctions fn are even and odd functions for positive and

negative values of their argument in the range (−T, T )

– The rate of decay of the eigenvalues κn with increasing n suggests

the number of the terms that are sufficient to keep in the stochastic

series expansion, Eq. 2.49. If this number is small the signal is governed

by a small nu,ber of independent sources of uncorrelated sources of

uncertainty with statistical properties given by Eqs. 2.50 to 2.57

– The basis fn is optimal in the sense that it allows the representation of

the autocorrelation function with the minimum number of therms in the

series in Eq. 2.54

– The KL representation maximizes the Shannon entropy measure which

reveals the minimum number of terms that are sufficient for the repre-

sentation of the variability of the signal.

In the following sections two methods of obtaining the KL basis will be

explained.

2.7
Direct Method

The sea surface elevation can be decomposed in two parts [32]

ζ(x, t) = v(x, t) + E[ζ(x, t)] (2.58)

where x are the X and Y coordinates of the sea surface and v is a stochastic

process with zero mean and, as a consequence, its correlation tensor equals its

autocorrelation tensor. If v is real then the spatial autocorrelation function of

two points is defined by the tensorial product

R (x,x′) = E [v(x, t)⊗ v(x′, t)] (2.59)
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Considering the field

u(xi, yj, t) (2.60)

where i, j assume values from 1 to Nx, Ny respectively. For each instant

of time there are N sample values, N = 2 × Nx × Ny. The number 2

multiplying the expression is due to the two fields (xand y). The sample can

be put in order: u1(t), u2(t), . . . , uN(t). The dynamic system displacement are

numerically calculated in N points in M instants of time

[U ] = [u1,u2, . . . ,uN ] =


u1(t1) u2(t1) . . . uN(t1)

. . . .

. . . .

. . . .

u1(tM) u2(tM) . . . uN(tM)

 (2.61)

Using the stationarity and ergodicity assumption, the variation of the

field with respect to the mean value is given by

[V ] = [U ]− 1

M



∑M
i=1 u1(ti)

∑M
i=1 u2(ti) . . .

∑M
i=1 uN(ti)

. . . .

. . . .

. . . .∑M
i=1 u1(ti)

∑M
i=1 u2(ti) . . .

∑M
i=1 uN(ti)

 (2.62)

and the spatial correlation matrix is given by

[R] =
1

M
[V ]T [V ] (2.63)

The matrix [R] is symmetric by construction. It generates orthogonal

eigenvectors, which are the Proper Orthogonal Modes also called Empirical

Modes. The Proper Values are given by the eigenvalues of the matrix [R]. It

can be noted that the dimension of matrix [R] depends only on the spatial

disretization. Therefore the direct method is recommended when the spatial

mesh is coarse and there are many instants of time.

2.8
Snapshots Method

A snapshot is a configuration of the system at a instant of time. Using the

ergodicity hypothesis a snapshot at instant m can be decomposed in two parts

given by [32]



Chapter 2. Sea Surface Elevation 28

u(m) = v(m) + lim
M→∞

1

M

M∑
m=1

u(m) (2.64)

After obtaining v(m) the autocorrelation tensor is given by

R(x,x′) = lim
M→∞

1

M

M∑
m=1

v(m)(x)⊗ v(m)(x′) (2.65)

As in pratical applications the sum will be finite, Eq. 2.65 becomes

RM(x,x′)
1

M

M∑
m=1

v(m)(x)⊗ v(m)(x′) (2.66)

since M is sufficiently large. It is necessary to obtain the eigenfunctions of the

tensor RM(x,x′) ∫
D

RM(x,x)′ψk(x
′)dx′ = λkψk(x) (2.67)∫

D

1

M

M∑
m=1

v(m)(x)⊗ v(m)(x′)ψk(x
′)dx′ = λkψk(x) (2.68)

1

M

M∑
m=1

v(m)(x)

∫
D

v(m)(x′)ψk(x
′)dx′ = λkψk(x) (2.69)

Considering

akm =
1

M

∫
D

v(m)(x′)ψk(x
′)dx′ (2.70)

M∑
m=1

akmv(m)(x) = λkψk(x) (2.71)

making Akm = akm/λk

ψk(x) =
M∑
m=1

Akmv(m) (2.72)

The orthogonal basis is a linear combination of the snapshots.

∫
D

1

M

M∑
m=1

v(m)(x)⊗ v(m)(x′)
M∑
m=1

Aknv
(n)(x′)dx′ = λk

M∑
m=1

Akmv(m)(x) (2.73)

1

M

M∑
m=1

v(m)(x)
M∑
n=1

Akn

∫
D

v(m)(x′)v(n)(x′)dx′ = λk

M∑
m=1

Akmv(m)(x) (2.74)

Using the internal product

1

M

M∑
m=1

v(m)(x)
M∑
n=1

Akn
〈
v(m)v(n)

〉
= λk

M∑
m=1

Akmv(m)(x) (2.75)
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Considering that the set of snapshots are independent, the solution of

the above equation is

[D][A] = λ[A] (2.76)

where [A] is a matrix in which the columns correspond to the eigen vectors of

[D]

[D]mn =
1

M

〈
v(m),v(n)

〉
(2.77)

The construction of KL-basis results from this eigenvalue problemm. It

can be noted that the dimensions of matrix [D] depends only on the number

of snapshots, therefore this method is recommended when the spatial mesh is

very refined and there are not many instants of time.



3
Dynamics of the Platform

An example of application of the proposed procedure will be given where the

equipment to be designed is similar to the drilling tower mounted on a platform

shown on Fig. 3.1.

Some simplifications on the geometry of the platform have been made

and each leg of the platform will be considered to have a cylindrical shape

and the connections between the legs were removed. The draft of the platform,

the depth of the submerged volume of the body measured from undisturbed

sea surface, has been modified in order to compensate the differences on the

geometry. A sketch of the simplified platform is shown on Fig. 3.2

3.1
Equation of Motion

The motions of the platform can be split into three mutually perpendicular

translations of the center of gravity G and the three rotations around G shown

Figure 3.1: Drilling tower mounted on a platform
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Figure 3.2: Sketch of the platform

on Fig. 3.3. When obtaining the dynamics of the platform the global coordinate

system will be used.

The equations of motion for the six degrees of freedom of the platform,

influenced by external loads are given by

6∑
j=1

{(Mij + Aij) ẍj +Bijẋj + Cijxj} = Fi for i = 1, . . . , 6 (3.1)

where i = 1 to 6 are the surge, sway, heave, roll, pitch and yaw motions, xj is

the displacements of harmonic oscillation in or about direction j, Mij are solid

mass or inertia coefficients, Aij are hydrodynamic mass or inertia coefficients,

Bij are hydrodynamic damping coefficients and Cij are restitution coefficients

and Fi is the harmonic exciting wave force or moment in direction i. The surge,

sway and yaw motions are considered to be restricted by the mooring system

or dynamic positioning system of the platform. Therefore, in this work only

the the heave, roll and pitch motions of the platform will be considered when

determining the base excitation for the drilling tower.The solid mass matrix of

the platform is given by

[M (p)] =

 Mp 0 0

0 Ixx −Ixy
0 −Ixy Iyy

 (3.2)

where Mp is the mass of the platform, Ixx is the mass moment of inertia around

X axis, Iyy is the mass moment of inertia around Y axis and Ixy is the mass

product of inertia, when i 6= j. The hydrodynamic mass matrix of the platform

is given by
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Figure 3.3: Movements of the platform

[A(p)] =

 4a 0 0

0 2aL2
y 0

0 0 2aL2
x

 (3.3)

where a is the hydrodynamic mass coefficient per cylinder of the platform, and

Lx and Ly are the distances between the cylinders along X and Y direction

respectively. The hydrodynamic damping matrix is given by

[B(p)] =

 4b 0 0

0 2bL2
y 0

0 0 2bL2
x

 (3.4)

where b is the hydrodynamic damping coefficient per cylinder of the platform.

The restitution matrix is given by

[C(p)] =

 4c 0 0

0 2cL2
y 0

0 0 2cL2
x

 (3.5)

where c is the restitution coefficient per cylinder of the platform.

Considering that the platform motions have a linear behavior and the

sea state have a known wave spectrum the resulting motions of the platform

can be obtained by the superposition of the resulting motions of the platform

in still water and under the action of regular waves. The following two types

of loads are considered to be acting on the platform [18]

1. The hydromechanical forces and moments induced by the harmonic

oscillations of the rigid body moving in the undisturbed surface of the
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fluid

2. The wave exciting forces and moments produced by waves coming in on

the restrained body

3.2
Hydromechanical Loads

The geometry of the platform will be simplified considering that the legs of

the platform have the shape of a cylinder. The hydromechanical loads over a

vertical cylinder will be discussed in the following. The dynamics of a heaving

cylinder is given by [18]

mz̈ = −P + ρg(DR− z)Aw − bż − az̈ (3.6)

where m is the solid mass of the cylinder, z is the vertical displacement, P

is the weight of the cylinder, ρ is the specific mass of the water, DR is the

draft of cylinder at rest, Aw is the water plane area of the cylinder, b is the

hydrodynamic damping coefficient and a is the hydrodynamic mass coefficient.

According to Archimedes’ law

P = ρgDRAw (3.7)

and Eq. 3.6 becomes

(m+ a)z̈ + bż + cz = 0 (3.8)

where c is the restoring spring coefficient given by

c = ρgAw (3.9)

The vertical oscillations of the cylinder will generate waves which propa-

gate radially from it. Since these waves transport energy they withdraw energy

from the free cylinder oscillations causing its motion die out. This so-called

wave damping is proportional to the velocity of the cylinder and the coeffi-

cient b is called the wave or potential damping coefficient.

The other part of the hydromechanical force, az̈, is caused by the

accelerations that are given to the water particles near to the cylinder. This

part of the force does not dissipate energy and manifests itself as a standing

wave system near the cylinder. The coefficient a is called the hydrodynamic

mass or added mass.

After experiments it could be noted that both the acceleration and the

velocity terms have a sufficiently linear behavior at small amplitudes [18]. The

term cz is the restoring force and the total reaction forces of the fluid on the

oscillating cylinder, az̈ + bż + cz, are called hydromechanical forces.
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3.3
Wave Loads

In this section the steps to obtaining the loads over platform will be explained
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Figure 3.4: Obtaining the loads over platform

The loads due to the waves over the cylinders that represent the legs

of the platform will be determined from the potential theory based on classic

theory of deep water. This classic theory is based on following assumptions

[18]

– The water surface slope is small, therefore terms in the equations of

the waves with magnitude in the order of the steepness-squared can be

ignored

– Harmonic displacements, velocities, accelerations of the water particles

and also harmonic pressures will have a linear relation with the wave

surface elevation, therefore the theory is considered linear

For a single regular wave traveling on x direction the wave potential is

written as [18]

Φw(x, z, t) = P (z)sin(kx− ωt) (3.10)

where z is the distance below the still water level (positive upwards), k is the

wave number and ω is the wave frequency. P is a function yet to be defined.

This velocity potential has to fulfill four requirements:
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1. Continuity, or Laplace, condition

2. Sea bed boundary condition

3. Free surface dynamic boundary condition

4. Free surface kinematic boundary condition

From the definition of the velocity potential, the velocity of the water

particles in the three translational directions is given by [18]

u = vx =
∂Φw

∂x

v = vy =
∂Φw

∂y
(3.11)

w = vz =
∂Φw

∂z

The continuity condition states that [18]

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.12)

and since the fluid is homogeneous and incompressible this condition results

in the Laplace Equation for potential flows [18]

∇2Φw =
∂2Φw

∂x2
+
∂2Φw

∂y2
+
∂2Φw

∂z2
= 0 (3.13)

Considering that water particles move in the x − z plane only and

substituting Eq. 3.10 into 3.13 yields a homogeneous solution of this equation

[18]

d2P (z)

dz2
− k2P (z) = 0 (3.14)

One of the solutions for P is given by

P (z) = C1e
kz + C2e

−kz (3.15)

Considering the first boundary condition, the wave potential can be

written now with two unknown coefficients as [18]

Φw(x, z, t) =
(
C1e

kz + C2e
−kz) sin(kx− ωt) (3.16)

The vertical velocity of water particles at the sea bed is zero (no-leak

condition) [18]

∂Φw

∂z

∣∣∣∣
z=−h

= 0 (3.17)
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where h is the sea depth at considered location. Substituting this boundary

condition in Eq. 3.16 it is obtained

C1e
−kh = C2e

kh (3.18)

and Eq. 3.15 can be written as

P (z) =
C

2

(
ek(h+z) + e−k(h+z)

)
= Ccosh[k(h+ z)] (3.19)

and the wave potential with only one unknown becomes

Φw(x, z, t) = Ccosh[k(h+ z)]sin(kx− ωt) (3.20)

where C is a constant to be determined. The pressure at the free surface of the

fluid is equal to the atmospheric pressure. This requirement for the pressure

is called the dynamic boundary condition at the free surface. The Bernoulli

equation for an unsteady irrotational flow is in its general form [18]

∂Φw

∂t
+

1

2

(
u2 + v2 + w2

)
+
p

ρ
+ gz = C∗ (3.21)

In two dimensions v = 0 and considering that waves have a small

steepness Eq. 3.21 turns into

∂Φw

∂t
+
p

ρ
+ gz = C∗ (3.22)

At the free surface this condition becomes

∂Φw

∂t
+
p0
ρ

+ gζ = C∗ for z = ζ (3.23)

where p0 is the atmospheric pressure. Since p0/ρ − C∗ is a constant the Eq.

3.23 can be written as

∂Φw

∂t
+ gζ = 0 for z = ζ (3.24)

since this equation is valid for all values of ζ it is valid for z = 0 as well and

the wave profile becomes

ζ = −1

g

∂Φw

∂t
for z = 0 (3.25)

Substituting the Eq. 3.20 into 3.25 it is obtained

ζ =
ωC

g
cosh(kh)cos(kx− ωt) (3.26)

Eq. 3.26 can be written as

ζ = ζacos(kx− ωt) (3.27)

where

ζa =
ωC

g
cosh(kh) (3.28)
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Therefore, the corresponding wave potential, as a function of the water

depth, is given by

Φw =
ζag

ω

cosh[k(h+ z)]

cosh(kh)
sin(kx− ωt) (3.29)

For deep water h→∞ (short waves) and the wave potential becomes

Φw =
ζag

ω
ekzsin(kx− ωt) (3.30)

The pressure on the bottom of the cylinder (z = −DR) can be obtained

from Eq. 3.22 [18]

p = ρgζae
−kDRcos(ωt− kx) + ρgDR (3.31)

where DR is the draft, the distance from undisturbed sea surface to the bottom

of the cylinder. Since the diameter of the cylinder is small compared to the

wave length the pressure distribution on the bottom of the cylinder can be

considered uniform and Eq. 3.31 turns into

p = ρgζae
−kDRcos(ωt) + ρgDR (3.32)

and the vertical force on the bottom of the cylinder is given by

F =
[
ρgζae

−kDRcos(ωt) + ρgDR
] π

4
D2
c (3.33)

where Dc is the diameter of the cylinder. The harmonic part of this force is

the regular harmonic wave force and it can be expressed as a spring coefficient

times a reduced or effective wave elevation

FFK = cζ∗ (3.34)

This wave force is called the Froude-Krilov force and the spring coefficient

is given by

c = ρg
π

4
D2
c (3.35)

and the reduced or effective wave elevation for deep water is given by

ζ∗ = e−kDRζacos(ωt) (3.36)

where k is the wave number, given by

ki =
ω2
i

g
for i = 1, . . . , N (3.37)

The Froude-Krilov forces are obtained from an integration of the pres-

sures on the body in the undisturbed wave. As part of the waves will be

diffracted there are two additional force components, one proportional to the

effective vertical acceleration and one proportional to the effective vertical ve-

locity, therefore the total wave force on the bottom of the cylinder is given

by
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Fw = aζ̈∗ + bζ̇∗ + cζ∗ (3.38)

where a is the hydrodynamic mass coefficient and b is the hydrodynamic

damping coefficient. The terms aζ̈∗ and bζ̇∗ are considered to be corrections

on the Froude-Krilov force due to diffraction of the waves by the presence of

the cylinder in the fluid. Substituting the Eq. 3.36 into 3.38 it is obtained

Fw = ζae−kDR
(
c− aω2

)
cos(ωt)− ζae−kDR(bω)sin(ωt) (3.39)

This wave force can be written independently in terms of the in-phase

and out-of-phase terms

Fw = Facos(ωt+ εFζ) = Facos(εFζ)cos(ωt)− Fasin(εFζ)sin(ωt) (3.40)

Equating Eqs. 3.39 and 3.40 the following equations are obtained

Facos(εFζ) = ζae−kDR
(
c− aω2

)
(3.41)

and

Fasin(εFζ) = ζae−kDR (bω) (3.42)

Adding the square of these two equations results in the wave force

amplitude

Fa
ζa

= e−kDR
√

(c− aω2)2 + (bω)2 (3.43)

and the division of the in-phase and the out-of-phase term in Eq. 3.41 results

in the phase shift

εFζ = arctan

{
bω

c− aω2

}
for 0 < εFζ2π (3.44)

Therefore, the equation of motion of a heaving cylinder under the action

of hydromechanical and wave load is given by

(m+ a)z̈ + bż + cz = aζ̈∗ + bζ̇∗ + cζ∗ (3.45)

3.4
Response in Regular Waves

In this section and in the next one the steps to obtaining the dynamics of the

platform will be obtained

The heave response to the regular wave excitation is given by [18]

z = zacos (ωt+ εzζ) (3.46)

and substituting the Eqs. 3.46 and 3.36 into 3.45 yields



Chapter 3. Dynamics of the Platform 39

WAVE 
SPECTRUM 

SEA SURFACE 
ELEVATION 

SEA CONDITIONS 

PROBABILITY 
DISTRIBUTION 

PLATFORM 
CONFIGURATION 

HYDRODYNAMIC 
COEFFICIENTS 

LOADS OVER 
PLATFORM 

PLATFORM 
PARAMETERS 

HYDRODYNAMIC 
COEFFICIENTS 

DYNAMICS OF THE 
PLATFORM 

TOWER 
POSITION 

DYNAMICS OF THE 
TOWER 

STRESS-STRAIN 
RELATION 

BASE 
EXCITATION 

PARAMETER'S 
UNCERTAINTY 

STRESS  
TIME HISTORY 

FATIGUE 
PARAMETERS 

STRUCTURAL 
INTEGRITY 

TOWER 
CONFIGURATION 

Figure 3.5: Obtaining the dynamics of the platform

za
[
c− (m+ a)ω2

]
cos (ωt+ εzζ)− zabωsin (ωt+ εzζ) =

= ζae
−kDR (c− aω2

)
cos(ωt)− ζae−kDRbωsin(ωt) (3.47)

By equating the two out-of-phase terms and the two in-phase terms the

following two equations are obtained

za
{[
c− (m+ a)ω2

]
cos (εzζ)− bωsin (εzζ)

}
= ζae

−kDR (c− aω2
)

(3.48)

and

za
{[
c− (m+ a)ω2

]
sin (εzζ) + bωcos (εzζ)

}
= ζae

−kDRbω (3.49)

Adding the squares of these two equations results in the heave amplitude

characteristics

za
ζa

= e−kDR

√
(c− aω2)2 + (bω) 2

[c− (m+ a)ω2) 2

(

bω)2 (3.50)

and elimination of the term za/ζae
−kDR in the Eqs. 3.48 and 3.49 yields the

phase shift characteristics
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εzζ = arctan

(
−mbω3

(c− aω2) [c− (m+ a)ω2) + (bω)2

)
for 0 ≤ εzζ ≤ 2π (3.51)

It can be noted that the requirements of linearity are fulfilled, namely,

the heave amplitude is proportional to the wave amplitude and the phase

shift is not dependent on the wave amplitude. The amplitude and phase

characteristics are called the frequency characteristics of the vessel. The

amplitude characteristics is also called the Response Amplitude Operator

(RAO).

3.5
Response in Irregular Waves

The heave response spectrum of a motion can be found by using the transfer

function of the motion and the wave spectrum [18]

Sz(ω) =

∣∣∣∣zaζa (ω)

∣∣∣∣2 Sζ(ω) (3.52)

The moments of the heave response are given by

mnz =

∫ ∞
o

Sz(ω)ωndω for n = 0, 1, 2, . . . (3.53)

The significant heave amplitude, the mean value of the highest one-third

part of the amplitudes, is given by

z̄a1/3 = 2RMS = 2
√
m0z (3.54)

where RMS is the Root Mean Square value. A mean period can be found from

the centroid of the spectrum

T1z = 2π
m0z

m1z

(3.55)

The average zero-crossing period is given by

T2z = 2π

√
m0z

m1z

(3.56)

Wu and Hermundstad [40] presented a nonlinear time-domain formu-

lation for ship motions and wave loads and a nonlinear long-term statistics

method. Initially they presented the theoretical long-term probability of ex-

ceedance per unit time assuming the linearity of the ship-fluid system and

that the short-term response is a stationary Gaussian narrow-band process

with zero mean an therefore the peak values are distributed according Rayleigh

distribution. In this case the probability of exceedance per unit time is given

by
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P (y > y1) =

∫
R

∫
β

∫
H

∫
T

e−y
2
1{}2Rnp(β,H, T )dRdβdHdT (3.57)

where y are the wave-induced loads, R is the zeroth spectral moment repre-

senting the mean square of each short-term response, n is the average number

of maxima or minima per unit time in each short-term response, β is the wave

heading, H is the wave height and T is the wave period . A completely inde-

pendent calculation using Eq. 3.57 was carried out for each loading condition.

Since the joint probability p is not available in advance a few simplifications

were necessary and the Eq. 3.57 could be approximated by the following sum-

mation

P (y > y1) =
∑
β

∑
Hs

∑
T1

e−y
2
1{}2RnP1(β)P2(Hs, T1) (3.58)

where the joint probability P2 is presented for a given ocean area in the form

of a scatter diagram. Since the nonlinear response is no longer Gaussian the

distribution of peak values is not according Rayleigh distribution and Wu and

Hermundstad used an alternative probability density function

g(y) =
c

Γ(r)
µcrycr−1e−(µy)

c

0 ≤ y ≤ ∞ (3.59)

where Γ(r) is the gamma function and µ, c and r are parameters of the

distribution that can be evaluated through certain moments of the histogram

or by a weighted curve fitting and the histogram of peak values together with

the average number of maxima or minima for each wave heading and sea

state are obtained from the nonlinear time-domain simulation. The probability

distribution function is given by

G(y) =
Γ(uy)c(r)

Γ(r)
(3.60)

where Γ() is the incomplete gamma function with argument (). After some

manipulation the long-term probability of exceedance for nonlinear responses

is given by

P (y > y1) =
∑
β

∑
Hs

∑
T1

(µy1)
c(r−1) e−(µy1)

c

Γ(r)
nP1(β)P2(Hs, T1) (3.61)

Wu and Hermundstad compared the long-term obtained moments with

those given by classification societies and a good agreement has been obtained

and intend to use the method for accurately evaluating the extreme wave loads

and other nonlinear responses in ship design.

————————-Incluir grÃ¡ficos para pdf e PDF———————-



4
Dynamics of the Drilling Tower

In this section the steps to obtaining the base excitation over the tower will be

explained

WAVE 
SPECTRUM 

SEA SURFACE 
ELEVATION 

SEA CONDITIONS 

PROBABILITY 
DISTRIBUTION 

PLATFORM 
CONFIGURATION 

HYDRODYNAMIC 
COEFFICIENTS 

LOADS OVER 
PLATFORM 

PLATFORM 
PARAMETERS 

HYDRODYNAMIC 
COEFFICIENTS 

DYNAMICS OF THE 
PLATFORM 

TOWER 
POSITION 

DYNAMICS OF THE 
TOWER 

STRESS-STRAIN 
RELATION 

BASE 
EXCITATION 

PARAMETER'S 
UNCERTAINTY 

STRESS  
TIME HISTORY 

FATIGUE 
PARAMETERS 

STRUCTURAL 
INTEGRITY 

TOWER 
CONFIGURATION 

Figure 4.1: Obtaining the base excitation

The drilling tower mounted on the platform consists of a tower used to

support two lifting systems. The base of the tower is welded to the platform

and this weld is critical for fatigue. The base excitation on the tower is obtained

by means of a coordinate transformation of the response of the platform to the

x, y and z local coordinate system located at the base of the tower. The Fig.

4.2 shows the model of the tower.

4.1
Partial Differential Equation

The tower will be considered a beam clamped to the platform and free on

the other end and the normal stress due to the bending about the y and z
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Figure 4.2: Sketch of the tower

directions will be calculated. As the mass of the tower is much smaller than

the mass of the platform it will be considered that the dynamics of the tower

don’t affect the dynamics of the platform. The differential equation for a beam

in bending around the z direction is given by

− ∂2

∂x2

[
EIz(x)

∂2v(x, t)

∂x2

]
+ fy(x, t) = m(x)

∂2v(x, t)

∂t2
for 0 < x < L (4.1)

where v(x, t) is the displacement on y direction of any point x and instant t,

fy(x, t) is the inertia load per unit length and Iz(x) is the inertia area moment

about the z direction, the direction x cross the geometric center of transverse

sections. The Euler-Bernoulli theory has been used. The boundary conditions

for a clamped-free beam are given by

v(0, t) = 0 (4.2)

∂v(x, t)

∂x

∣∣∣∣
x=0

= 0 (4.3)

EIz(x)
∂2v(x, t)

∂x2

∣∣∣∣
x=L

= 0 (4.4)
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and

∂

∂x

[
EIz(x)

∂2v(x, t)

∂x2

] ∣∣∣∣
x=L

= 0 (4.5)

It is necessary to solve the eigenvalue problem associated to this system.

As the solution for Eq.(4.1) is splittable on space and time it can be given by

v(x, t) = V (x)H(t) (4.6)

where H is an harmonic function. Considering the frequency of H as ωy,

the associated eigenvalue problem can be given by the following differential

equation

d2

dx2

[
EIz(x)

d2V (x)

dx2

]
= ω2

ym(x)V (x) for 0 < x < L (4.7)

together with the following boundary conditions for a clamped-free beam

V (0) = 0 (4.8)

dV (x)

dx

∣∣∣∣
x=0

= 0 (4.9)

EIz(x)
d2V (x)

dx2

∣∣∣∣
x=L

= 0 (4.10)

and

d

dx

[
EIz(x)

d2V (x)

dx2

] ∣∣∣∣
x=L

= 0 (4.11)

4.2
Approximation of the Solution

In this section the steps to obtaining the dynamics of the tower will be

explained.

As the tower has a variable cross section it will be necessary to obtain

an approximation of the solution to the dynamics of the structure. One of the

possible ways to obtain such approximation is through the discretizing of the

equations that describe the dynamics of the structure using the Finite Element

Method (FEM). The equations will be discretized using one-dimensional

elements with two nodes and six degrees of freedom per node as shown on

Fig. 4.4.

In this work only the dynamic response of the tower on y and z direction

will be investigated. An approximation of the displacement on y direction

within an element is given by

v(x, t) ≈ L2(x)u2(t) + L6(x)lu6(t) + L8(x)u8(t) + L12(x)lu12(t) (4.12)
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Figure 4.3: Obtaining the dynamics of the tower

where

L2(x) = (1− 3ξ2 + 2ξ3) L6(x) = (−ξ − 2ξ2 + ξ3)

L8(x) = (3ξ2 − 2ξ3) L12(x) = (−ξ2 + ξ3)
(4.13)

ξ = x/l and l is the length of the element. The mass and stiffness matrix

obtained considering such approximations are given by

[M (e)
y ] =

ρĀl

420


156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2

 (4.14)

and

Figure 4.4: One-dimensional element



Chapter 4. Dynamics of the Drilling Tower 46

[K(e)
y ] =

EĪz
l3


12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2

 (4.15)

where ρ is the mass density of the material of the tower, Ā is the average cross

section of the tower, E is the elasticity modulus and Īz is the average inertia

area moment about the z direction.

As in real systems there is always some level of dissipation a damping

matrix can be used. This matrix can be considered proportional to mass and

stiffness matrix and is given by

[C(e)
y ] = α[M (e)

y ] + φ[K(e)
y ] (4.16)

where α and φ are damping parameters. The assembly of the elements can be

seen on Fig. 4.5

Figure 4.5: Assembly of the elements

and the approximation of the dynamics of the structure is given by

[M ]Ẍ + [C]Ẋ + [K]X = F (4.17)

where [M ], [C] and [K] are the global matrices of the assembly of elements,

X are the degrees of freedom of the approximation of the dynamics and F are

the external loads over the tower.
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4.3
Reduced-order Model for Dynamics

In the section 2.6 it has been proposed to use a reduced-order model to

represent the sea surface elevation since the use of a full-order model to

calculate the nonlinear wave body iterations is a time consuming computational

task. In the same way, the use of the complete finite element model for the

structure of the tower for all necessary simulations to evaluate the fatigue

resistance of the equipment will make this task prohibitively expensive and an

alternative reduced-order model is necessary.

Considering that the matrices [M ], [C] and [K] have dimensions m×m
and a basis composed by the n elements that constitute the columns of the

matrix [Ψ] with dimension m × n with n � m. The dynamic response of the

system represented in this basis is given by [32]

X(t) = [Ψ]a(t) (4.18)

Substituting Eq. 4.18 into Eq. 4.17 it’s obtained

[M ][Ψ]ä(t) + [C][Ψ]ȧ(t) + [K][Ψ]a(t) = F(t) (4.19)

Matrix [Ψ] is composed by orthogonal vectors, ψi, that generate a reduced

subspace. The projection of the dynamics, Eq. 4.19, into this reduced subspace

is given by

[Mr]ä(t) + [Cr]ȧ(t) + [Kr]a(t) = fr(t) (4.20)

where

[Mr] = [Ψ]T [M ][Ψ] (4.21)

is the reduced mass matrix,

[Cr] = [Ψ]T [C][Ψ] (4.22)

is the reduced damping matrix,

[Kr] = [Ψ]T [K][Ψ] (4.23)

is the reduced stiffness matrix and

[fr] = [Ψ]T f (4.24)

is the reduced external loads vector. The system has now order n × n and it

is expected that the necessary simulations to evaluate the fatigue resistance of

the equipment will demand a reduced computational effort.

It is necessary to choose an efficient basis to represent the dynamics of

the system. One of the options is to use the normal modes of the system. This
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is the best choice when linear systems are being analyzed [32]. After solving

the following eigenvalue problem(
[M ]ω2 + [K]

)
φ = 0 (4.25)

where ω are the natural frequencies and φ are the normal modes associated.

Since the base of the drilling tower is excited by the displacement of the

platform and the tower is considered to be clamped to the deck of the platform,

the degrees of freedom of the finite element node that represent the section of

the tower close to the deck have prescribed displacements and rotations.

If the complete finite element model is being used to obtain the dynamic

response of the tower, it is necessary to prescribe only the displacements and

rotations of the degrees of freedom of the node at the bottom of the tower.

If in turn a reduced-order model is being used, it is necessary to associate

a prescribed mode of for the entire model for each prescribed degree of freedom.

In this work the finite elements used have two nodes and six degrees of freedom

per node. Therefore, when constructing the reduced-order model using the

normal modes from finite element model, six additional prescribed modes

have to be included on the basis before accomplishing the projection of the

approximation of the dynamics of the tower.

In general, the prescribed modes are given by

χ =
[
U1 U2 . . . Um

]T
(4.26)

where Ui are the prescribed values for each degree of freedom of the finite

element model. The prescribed mode for the displacement of the tower on x

direction is given by

χ1 =
[

1 0 0 0 0 0 1 0 0 0 0 0 . . . 1 0 0 0 0 0
]T

(4.27)

The prescribed mode for the displacement of the tower on y direction is

given by

χ2 =
[

0 1 0 0 0 0 0 1 0 0 0 0 . . . 0 1 0 0 0 0
]T

(4.28)

The prescribed mode for the displacement of the tower on z direction is

given by

χ3 =
[

0 0 1 0 0 0 0 0 1 0 0 0 . . . 0 0 1 0 0 0
]T

(4.29)
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The prescribed mode for the torsion of the tower around x direction is

given by

χ4 =
[

0 0 0 1 0 0 0 0 0 1 0 0 . . . 0 0 0 1 0 0
]T

(4.30)

The prescribed mode for the bending of the tower around y direction is

given by

χ6 =
[

0 0 −X1 0 1 0 0 0 −X2 0 1 0 . . . 0 0 −Xnn 0 1 0
]T

(4.31)
where Xi is the coordinate of the node i on x direction and nn is the number

of nodes.

The prescribed mode for the bending of the tower around z direction is

given by

χ5 =
[

0 X1 0 0 0 1 0 X2 0 0 0 1 . . . 0 Xnn 0 0 0 1
]T

(4.32)
The basis for the reduced-order model is given by

[Φ] =
[
χ1 χ2 χ3 χ4 χ5 χ6 φ1 φ2 . . . φn

]
(4.33)

and the dynamic response is given by

X(t) = [Φ]q(t) (4.34)

where q are the modal coordinates. The approximation of the dynamics of the

system projected on this basis is given by

[Mr]q̈(t) + [Cr]q̇(t) + [Kr]q(t) = fr(t) (4.35)

where

[Mr] = [Φ]T [M ][Φ] (4.36)

[Cr] = [Φ]T [C][Φ] (4.37)

[Kr] = [Φ]T [K][Φ] (4.38)

fr = [Φ]T f (4.39)

4.4
Stresses at Critical Points

In this section the steps to obtaining the stress time history will be explained.
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Figure 4.6: Obtaining the stress time history

The cross section of the tower is shown on Fig. 4.2. The normal stress-

deformation relation for a variable cross-section beam is given by

σ(x, t) = Eyp
∂2v(x, t)

∂x2
(4.40)

where yp is the distance from required point to the neutral line of the

cross section. As an approximation of the dynamics of the structure was

obtained using the Finite Element Method and it is necessary to obtain

an approximation to the resultant stress on required points as well. By

substituting the Eq. (4.12) into Eq. (4.40) an approximation to the normal

stress due to the bending about the z direction is obtained

σ(x, t) ≈ Eyp (L′′2(x)u2(t) + L′′6(x)lu6(t) + L′′8(x)u8(t) + L′′12(x)lu12(t))
Īz

Iz(x)
(4.41)

where double primes indicate a double differentiation with respect to spatial

variable x.

Only the steady-state part of the dynamic response of the tower should

be considered when evaluating the stresses at critical points.



5
Fatigue Analysis

In this chapter the steps to calculating the structural integrity will be ex-

plained.
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Figure 5.1: Calculating the structural integrity

In order to determine the fatigue strength of any equipment it is necessary

to calculate the cumulative damage on its structure caused by cyclic loads.

The expected cumulative damage for the total working life of the equipment

at every point of the structure considered critical for fatigue should not exceed

a critical level, [19]. In this work the fatigue life will be calculated based on

the S-N fatigue approach under the assumption of linear cumulative damage.

5.1
Palmgren-Miner rule

The Palmgren-Miner rule is given by
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D =
n

N
(5.1)

where n is the number of stress cycles in a constant stress range S and N is the

number of cycles to failure at the same constant stress range. The S-N curve

for a given material and structural joint is then given by

NSmf = Cf (5.2)

where mf is the fatigue strength exponent and Cf is the fatigue strength

coefficient. According to [5] the mean stresses can be neglected for fatigue

assessment of welded connections and only the ranges of cyclic stress should

be considered in determining the fatigue endurance. The chosen S-N curve for

a given joint takes into account the local stress concentrations created by the

joint itself and by the weld profile and the design stress can be considered

the stress adjacent to the weld. If the weld is situated in a region of stress

concentration the nominal stress should be multiplied by an appropriate stress

concentration factor [5].

In this work the structural integrity of the welded connection of the base

of the tower to the deck of the platform will be investigated as it is critical

for fatigue and a failure in this connection would be catastrophic. Due to

this criticality, [6] recommends the use of a full penetration weld and a non

destructive examination after the welding process in order to check for the

existence of cracks or bubbles on the weld. As the stresses were calculated

using a classical beam theory a nominal stress S-N curves will be used.

5.2
Stress Range Distribution Evaluation

The use of Miner’s rule together with required S-N curve to determine the

fatigue strength of the structure makes necessary the knowledge of the number

of stress cycles at every stress ranges for all critical points of the structure

during the working life of the structure. As the fatigue strength has to be

determined during the design phase of the structure it is necessary to know

in advance the expected sea and loading condition, short term condition, as

well their probability distribution. In this work is proposed to do a numerical

simulation for each expected short term condition and construct a stress

histogram to express the stress range distribution using a rainflow procedure.

An approximation to the accumulated damage per each short term condition

can then be given by

Dj =
Tj
tj

R∑
i=1

ni
N̄i

for j = 1, . . . , o (5.3)
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where o is the number of expected short term conditions, Tj is the expected

working time under each short term condition, tj is the period of the simulation,

ni is the number of stress cycles in stress block i, R is the number of stress

blocks and N̄i is the number of cycles to failure given by

N̄i = Cf S̄
−mf

i for i = 1, . . . , R (5.4)

where S̄i is an average stress range attributed to each stress range block. The

choice of this average stress range may have a significant influence on the

calculated fatigue life [5] and can be given by

S̄i = λi (Si−1 + Si) for i = 1, . . . , R (5.5)

where Si−1 and Si are the limits for each stress block and λi are coefficients

to be obtained from related S-N curve in order to N̄i be an average number of

cycles to failure at that stress block. An approximation of the probability of

occurrence of the average stress range S̄i is given by

P
(
S̄i
)

=
ni
NT

for i = 1, . . . , R (5.6)

where NT is the total number of stress cycles obtained during the simulation

of the given short term condition. After substituting the Eqs. 5.4 and 5.6 into

Eq. 5.3 and rearranging the accumulated damage per each short term condition

can be given by

Dj =
Tj
tj

M∑
i=1

NTP
(
S̄i
)
S̄mi

C
for j = 1, . . . , o (5.7)

The summation of the product P
(
S̄i
)
S̄mi can be considered an approxi-

mation of the expected value of S̄m and Eq. 5.7 can be rewritten as

Dj =
Tj
tj

NT

C
E
[
S̄m
]

for j = 1, . . . , o (5.8)

The total expected damage for the working life of the structure is then

given by

D =
o∑
j=1

Dj (5.9)

A simplified approach for fatigue analysis where the stress range distri-

bution may be presented as a two-parameter Weibull distribution is proposed

on [5]. The two-parameter Weibull probability distribution function is given

by

F (s) = 1− e−(s/q)
h

(5.10)

where s is the stress stress range, q is a scale parameter, and h is a shape

parameter.
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The scale parameter can be obtained from the largest stress range. In

this case, it is given by [5]

q =
smax[

(ln(n0))
1/h
] (5.11)

where n0 is the number of cycles and smax is the largest stress range during

the working life. The scale parameter, h, can be determined by least-squares

methods, provided that stress range data distribution is available. In reference

[5] a maximum value of h = 1.2 is recommended for steel structures under

offshore environmental conditions.

The probability density function of the stress ranges is given by

f(s) =
dF (s)

ds
= h

sh−1

qh
e−(s/q)

h

(5.12)

The fatigue damage for finite stress range is given by Eq. 5.1 and the

number of cycles to failure at a given stress range can be obtained from Eq.

5.2

N(s) = Cfs
−mf (5.13)

By using Eq. 5.12 and Eq. 5.13 a differential fatigue damage can be

obtained as

dD =
n0f(s)

N(s)
ds (5.14)

and an estimation of fatigue damage can be obtained as

D̃ =

∫ ∞
0

dD (5.15)

In general the S-N curves are two slope curves. Considering that the

turning point is at s = s1 the integration on Eq. 5.15 has to be split into

D̃ = D̃1 + D̃2 (5.16)

where

D̃1 =

∫ s1

0

n0f(s)

Cf1s−mf1
ds (5.17)

and

D̃2 =

∫ ∞
s1

n0f(s)

Cf2s−mf2
ds (5.18)

Evaluating the integral on Eq. 5.17 it is obtained

D̃1 =
1

a

n0

[(
1

q

)h]−m
h (

1

q

)−h
q−h

[
Γ

(
h+m

h
, 0

)
− Γ

(
h+m

h
,

(
s1
q

)h)]
(5.19)
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and evaluating the integral on Eq. 5.18 it is obtained

D̃2 =
1

a

n0

[(
1

q

)h]−m
h (

1

q

)−h
q−hΓ

(
h+m

h
, 0

)
+

1

h(h+m)

 sh+m1

[(
s1
q

)h]−h+m
h
[
−hΓ

(
2 +

m

h
, 0
)

+ (h+m)Γ

(
h+m

h
,

(
s1
q

)h)]

(5.20)

where Γ is the gamma function given by

Γ(h, s1) =

∫ ∞
s1

sh−1e−sds (5.21)

This estimation of fatigue damage may be used within an optimization

strategy on intermediate calculating steps in order to reduce the computational

effort.

Low, [24], presented a closed form to estimate the fatigue damage for a

narrowband process. For a narrowband process the average frequency of the

peaks may be approximated by the zero mean upcrossing rate which, for a

Gaussian process, is given by

v+X(0) =
1

2π

σẊ
σX

(5.22)

where X is the stochastic process, σ denotes the standard deviation a a dot

the time derivative. In this case the probability density function of the peaks

follows a Rayleigh distribution and is given by

fRr =
r

σ2
X

e

(
− r2

2σ2
X

)
(5.23)

The number of stress cycles in a time duration T is given by

n = v+X(0)T (5.24)

Integrating over the stress range the expected damage can be calculated

as

D̄ = v+X(0)T

∫ ∞
0

1

N(s)
fS(s)ds (5.25)

substituting the S-N relationship it is obtained

D̄ =
v+X(0)T

Cf

∫ ∞
0

smffS(s)ds (5.26)

for a narrowband process the stress range can be consiedered as

S = 2R (5.27)

Substituting the Eq. 5.27 into Eq. 5.26
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D̄ =
2mfv+X(0)T

Cf

∫ ∞
0

rmffR(r)dr (5.28)

Substituting the Eq. 5.23 into Eq. 5.26 and integrating, the Rayleigh

approximation is obtained

D̄ =
v+X(0)T

Cmf

(
2
√

2σX

)mf

Γ
(

1 +
m

2

)
(5.29)

If the process can not be considered narrowbanded the Rayleigh approx-

imation is a conservative estimate to the fatigue damage.

Fricke et al [13] compared the results obtained for the fatigue resistance

of a detail of a containership according several classification societies and

concluded that a variation on the predicted fatigue lives is significant, mainly

due to considered loads, local stresses and chosen S-N curves. A direct

calculation of loads using a spectral method was performed and the variation of

the predicted life was reduced but was still significant. The results obtained by

direct calculation were considered to be too conservative. It can be concluded

that even using simplified approaches recommended by classification societies

or direct calculation of expected fatigue lives a lot of uncertainty is presented

on results.

Sutherland and Veers [36] examined the effects of using various models for

the distribution of stress cycles over the structure of wind turbine components.

They used a generalized Weibull fitting technique and obtained good results

for matching the body of the distribution and extrapolating the tail of the

distribution.

Tasdemir and Nohut [37] investigated the fatigue resistance of primary

supporting members of a ship structure. They used a global finite element

model for the ship and a local finite element model to obtain the stress

concentration factors for the weld details. For the long term stress range

distribution they used the procedure recommended by a classification society

based on the Weibull distribution.

Dong et all [7] performed a long-term fatigue analysis of welded multi-

planar tubular joints for a fixed jacket offshore wind turbine. They investigated

the influence of the wave loads, the wind loads and the combined effect of wind

and wave loads over the fatigue resistance of the welds of the structure. For

the distribution of the stresses due to the wave and wind loads they used a

two-parameter Weibull distribution and for the combination of wind and wave

loads they used the generalized gamma function whose probability density

function is given by

fg(s) =
|h|

Γ(a)

sah−1

qah
e−(s/q)

h

(5.30)
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Low and Cheung [26] proposed a customized approach for assessing

the fatigue resistance of mooring lines and risers. They used the JONSWAP

spectrum for calculating the sea surface elevation. Since this spectrum is a

function of shape parameter, the significant wave height, HS and the spectral

peak period, Tp, and they selected the value of the shape parameter, the joint

probability density function of HS and Tp is expressed as

fj (HS, Tp) = fH (HS) fTH (Tp|HS) (5.31)

Considering d (HS, Tp) as the damage function for a given HS and Tp

pair, Low and Cheung proposed to calculate the expected long-term damage

accumulated over a period T as

E[D] = T

∫ ∞
0

T

∫ ∞
0

d (Hs, Tp) fj (Hs, Tp) (d)HS(d)Tp (5.32)

and they proposed to use a multi-peaked third-order asymptotic approximation

for the integrand in order to evaluate this probability integral.

In most of the cases the stresses on structural components are a combi-

nation of two or more stresses due to different loads. Leira [22] investigated

the fatigue damage of welds subjected to multiple stress components. Despite

of the stress cycles of each individual component being distributed according

Weibull distribution even a linear combination of two or more Weibull com-

ponents wil in general not be Weibull distributed [22]. Leira proposes that for

the linear combination of two stress components with Weibull cycle distribu-

tions the fatigue damage which is accumulated during a time period T for a

one-slope S-N curve expressed according Eq. 5.2 can be expressed as

E[D(T )] =
N(T )

Cf

∫ ∞
0

T

∫ ∞
0

[√
s21 + cs22

]m
× fs1s2(s1, s2)(d)s1(d)s2 (5.33)

where N(T ) is the number of stress cycles that occur during the period T , s1

and s2 are the stress components, c is a constant to obtain the combined stress

and fs1s2 is the joint probability density function. Leira investigated the effect

of correlation between the two stress components on fatigue damage.

Ang et al [1] developed a technical procedure for a reliability-based

approach to fatigue analysis and fatigue-resistant design. They considered

that the stress cycles can be distributed according a Beta distribution whose

probability density function is given by

fb(s) =
sq−1

β(q, r)

(su − s)r−1

sq+r−1u

0 ≤ s ≤ su (5.34)

where s are the stress ranges, su is a upper limit for the stress ranges and
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β(q, r) =
Γ(q)Γ(r)

Γ(q + r)
(5.35)

where Γ is the gamma function and q and r are parameters of distribution

given by

q =
µ

su

[
Ω−2

(
su
µ
− 1

)
− 1

]
(5.36)

and

r =

(
su
µ
− 1

)
q (5.37)

where µ is the mean and Ω is the covariance of the applied stress range.

Wang [39] calculated the fatigue life of a ship structural detail using a

spectral approach. Assuming that the wave-induced bending stress variation

in a ship structural element in a specific sea state is a narrow band gaussian

random process and consequently the peak values of the stress has a Rayleigh

probability density function Wang presented the following formula to calculate

the fatigue damage in a specific sea state

Di =
T

Cf

(
2
√

(2)
)mf

Γ
(mf

2
+ 1
)
f0ipi (σi)

mf (5.38)

where T is design life of a ship in seconds, Cf is the fatigue strength coefficient,

mf is the fatigue strength exponent, Γ is the gamma function, f0i is zero-

up crossing frequency of the stress response in Hz, pi is the probability of

occurrence of the sea state i and σi is the standard deviation of the stress

process in the specific sea state.

Since for a wide band random process the Rayleigh distribution for the

stress peak values will result in a conservative estimation of the fatigue damage

a cycle counting correction factor in damage calculation should be introduced

in order to reduce the conservatism due to the narrow band assumption. In

this case the formula for fatigue damage, Eq. 5.38, has to be written as

Di =
T

Cf

(
2
√

(2)
)mf

Γ
(mf

2
+ 1
)
λ (mf , εi) f0ipi (σi)

mf (5.39)

where λ is the damage correction factor. This factor is a function of the fatigue

strength exponent and of εi that can be either a bandwidth parameter or a

regularity factor depending on the chosen formula for calculating the cycle

counting correction factor. Wang [39] presented three different formulas for

calculating this factor. Using one of these formulas, Wang obtained a fatigue

life of 25.16 years for a structural ship detail. For comparison, Wang also

calculated the fatigue life according the recommendation of a classification

society that assumes that the long-term distribution of the stresses follows a
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Weibull distribution. In this case the calculated fatigue life was found to be

18.765 years.



6
Model’s Uncertainties

The inherent uncertainties on the parameters or operators of any mechanical

system must be considered during the evaluation of its fatigue resistance. Since

the probability density function for the random variables that represent such

parameters or operators are not always available in advance for the designer it

is necessary a strategy to obtain the necessary probability density functions.

6.1
Maximum Entropy Principle

If there is not enough data available for the random variables the Principle

of Maximum Entropy can be used to obtain an approximation of the required

probability density function [35], [15] and [16]. This principle states that:

”Among all the probability distributions consistent with the prescribed

conditions the one that maximizes the uncertainty (entropy) should be chosen”

Being n the number of the welds of the tower, W a random vector with n

components and pW the probability density function of W , the entropy related

to pW is given by

S (pW ) = −
∫ +∞

−∞

∫ +∞

−∞
...

∫ +∞

−∞
pW (w)ln (pW (w)) dw . (6.1)

The only available information about the random variables is the fab-

rication tolerance, Wmin � W � Wmax. By using the Principle of Maximum

Entropy the obtained probability density function is

pW (w) = 1[Wmin,Wmax](w)
n∏
i=1

1

Wmaxi −Wmini

(6.2)

therefore, the random variables are independent with Uniform pdf. The same

distribution applies to the thickness of the plates.

6.2
Uncertainties in Fatigue Life Prediction

According [5] large uncertainties are associated with fatigue life prediction. One

of the sources of uncertainty are the S-N curves. Such curves are determined
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by mean of experiments on specimen and the two slope exponential curves

obtained by curve fitting from measured points. Further, the design curves

recommended on standards are the mean curve minus two standard deviations.

Batous and Soize [3] proposed a methodology for construction and

identification of a probabilistic model of random fields in presence of modeling

errors in high stochastic dimension and presented in context of computational

structural dynamics. They presented two ways to construct the prior stochastic

model of a random field H.

The first way is using an algebraic stochastic representation of the random

field H

H((x)) = fr(G(x)) for x ∈ Ω (6.3)

where x is a vector representing any point in the open bounded domain Ω of IR3,

fr is a given nonlinear deterministic mapping and where {G(x,x ∈ Ω} is agiven

random field for which the probability law (system of marginal probability

distributions) is completely defined and for which a generator of independent

realizations is available.

For the second way it is necessary that the mean function and the

covariance function of random field H are known functions, what is the case

when an algebraic stochastic representation of H has been constructed or

if experimental data are available for estimating these two functions with a

sufficient accuracy. Then under certain hypotheses a statistical reduction can

be constructed using the Karhunen-Loève expansion. The first way has been

used in this work for the constructing the stochastic model for the thickness

of the welds and for the thickness of the plates of the drilling tower.

Veldkamp on [38] presents the uncertainties on the results of fatigue

strength obtained by experiments with identical specimens under constant

and variable amplitude loading. He concluded that the fatigue life under

variable amplitude loading is shorter than the fatigue life under constant

amplitude loading. Therefore, when the designer chooses the S-N curve to

be used for the fatigue resistance evaluation of a structural component it

is necessary to be aware of whether the curve was obtained using constant

or variable amplitude loading. If the available curves were obtained under

constant amplitude loading a reduction factor for the values of the curve have to

be used. Veldkamp concluded on the same reference that the uncertainty of the

fatigue parameters dominate the overall uncertainty of the fatigue resistance

of the studied equipment.

Since the design of offshore equipments has to attend to the required

standards, the use of Design Fatigue Factors when determining critical param-
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eters for the structure has a big influence its fatigue life. Such design factors

are intended to overcome the uncertainty on loading, on S-N data and on the

Palmgren-Miner damage accumulation rule and to avoid the need of a proba-

bilistic analysis of the problem.

When the weld details require the use of hot spot stress factors, the

derivation of these factor is a source of uncertainty as well. The critical details

that present reduced fatigue life have to be inspected in-service to check for

existence of fatigue cracks.

Others sources of uncertainties are the choice of parameters for the

simulation of sea surface elevation, the model for the interaction between

the platform and the sea waves, the choice of hydrodynamics coefficients for

evaluation of the dynamics of the platform and the finite element model to be

used to obtain the stresses on required critical points.

Sarkar et al [33] proposed an approach based on Wiener chaos expan-

sions to estimate the fatigue damage in structural systems with parameter

uncertainties. They used the Hermite polynomial expansion to describe the

dependence of the damage rate on some uncertain parameters

d(z) =
∞∑
j=0

cjHj(z) ≈
n∑
j=0

cjHj(z) = dn(z) (6.4)

where d is the damage rate, z is a random variable, Hj are Hermite polynomials

and

cj = E [d(z)Hj(z)] = 1√
2π

∫ +∞
−∞ d(z)Hj(z)(e)−z

2/2dz

≈ 1√
2π

n∑
i=1

hid(zi)Hj(zi)e
−z2

i /2
(6.5)

Sarkar et al used this expansion to quantify how the uncertainty of one of

the parameters of the Morison’s equation used to model the force acting on the

pile of an offshore structure. They calculated the damage rate using a three

term truncated Hermite expansion and compared with the results obtained

using rainflow technique. A good agreement between the two estimates was

obtained, even in the tails of the distribution of z.

Low [25] presented a method for analyzing the variance of the damage

for any narrow-band Gaussian process. The covariance of the damage is given

by

c2D =
N + 2χ

N2

(
Γ(1 +mf

Γ(1 +mf/2)− 1

)
(6.6)

where N is the number of half-cycles, Γ is the gamma function and mf is the

fatigue strength exponent and
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χ =
N−1∑
k−1

(N − k)
[
αmf

ρ2ss(k) + βmf
ρ4ss(k)

]
(6.7)

where ρss is the autocorrelation of the stochastic process for the stress half-

cycles, αmf
and βmf

are coefficients depending on mf obtained by curve-fitting

techniques. The variance of the damage can then be obtained as

σ2
D = c2DD̄

2 (6.8)

where D̄ is the total expected damage. Low concludes that the proposed

method is nearly exact up to around mf = 6 and the method when applied to

process that are less narrowband presents some minimal errors.

Garbatov and Soares [14] studied the effect of various factors related

to fatigue damage assessment of a welded ship structural component. The

considered factors were model of the ship, scatter diagram, heading and

wave spectra. The fatigue damage was calculated using a spectral approach,

considering the long-term stress range distribution as a series of short-term

Rayleigh distributions for different sea states and headings.

They concluded that there are significant differences between all the

pairs of fatigue damage means as function of the model of the ship, there

are significant differences between the mean fatigue damage pairs of some of

the heading directions, the mean fatigue damages as function of the scatter

diagrams for North Atlantic and World Wide Trade are similar but for all the

others testes scatter diagram there were significant differences and finally that

for the three considered wave spectra there were also significant differences on

the obtained fatigue damage.
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Results

The expected damage on the critical point of the tower shown on Fig. 4.2

will be calculated. The working life of the equipment is 20 years. The main

parameters of the platform and of the tower are shown on Tab. 7.1.

Table 7.1: Main parameters of the equipment

Diameter of the legs of the platform Dc 27 m
Distance between the legs X dir. L 70 m
Distance between the legs Y dir. L 50 m

Draft of the platform DR 15 m
Mass of the platform MP 15.000 t
Height of the tower H 60 m

Height of the cross section h 8 m
Width of the cross section b(x) 7 m to 6 m

Thickness of the plates of the tower t 24 mm to 15 mm
Hydrodynamic mass coefficient a 760 t

Hydrodynamic damping coefficient b 68 t/s
Weibull parameter for Hs γ 0.84
Weibull parameter for Hs m 1.6
Weibull parameter for Hs β 1.6

S-N curve parameter mf1 3
S-N curve parameter Cf1 1012.592

S-N curve parameter mf2 5
S-N curve parameter Cf2 1016.320

Stress concentration factor SCF 1

The Pierson-Moskowitz spectrum has been used to identify the frequency

composition of the sea surface wave elevation. The spectrum is shown on Fig.

7.1.

For each simulation the phase angles for the different frequencies of sea

surface elevation were randomly chosen between 0 and 2π rad. The probability

density function for the phase angles was considered to be uniform.

On Fig. 7.2 one can see a snapshot of the sea surface elevation obtained

using the PM spectrum. The sea surface elevation was calculated and a

realization of the elevation at two of the cylinders of the platform is shown

on Fig. 7.3.



Chapter 7. Results 65

Figure 7.1: PM spectrum Figure 7.2: Sea surface elevation

A KL decomposition of the sea surface elevation was accomplished in

order to reduce the computational cost of calculating the dynamic response

of the platform. The simulation was carried out for 10s. After the simulation

the KL basis has been obtained and the results have been approximated using

only 6 modes. The construction of KL basis took 5% of the necessary time to

construct the original model. On Fig. 7.4 one can see a comparison between

the original result from simulation and the result obtained from reduced-order

model for all the points on the field at a given instant. A good agreement

between both results can be noted.

Figure 7.3: Sea surface elevation at
cylinders

Figure 7.4: Original x reduced-
order model

The Froude-Krilov forces on the bottom of the cylinders are the only

external forces acting on the platform. A realization of theses forces is shown

on Fig. 7.5. The incidence angle χ is randomly chosen between 0 and 2π rad.

The probability density function for this incidence angle was considered to be

uniform. This choice applies for moored platforms on locations where there are

no prevailing wind directions.

The dynamics of the platform is given by Eq. (7.1). The restitution

coefficient is given by Eq. (3.35). The remaining parameters are given on Tab.

7.1. A realizations of platform displacement is shown on Fig. 7.6.
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(7.1)

Figure 7.5: Total wave loads Figure 7.6: Platform displacement

The Weibull parameters for the significant wave height at the area where

the structure will be installed are given on Tab. 7.1. The expected working

years per each significant wave height are shown on Tab. 7.2.

Table 7.2: Significant wave height probability

HS Prob. Working
(m) years

1 0.0248 t1 = 0.496
2 0.4252 t2 = 8.503
3 0.3514 t3 = 7.028
4 0.1474 t4 = 2.948
5 0.0413 t5 = 0.827
6 0.0084 t6 = 0.169
7 0.0013 t7 = 0.026
8 0.0002 t8 = 0.003

The lifting load will be considered a concentrated mass at the free end of

the beam/drilling tower. As the equipment is not always lifting the maximum

load and there are limitations for the maximum load depending on the sea

condition and it is necessary to estimate during design phase of the equipment

the rate of use of the equipment for each expected sea condition. The maximum

lifting load of the equipment is 800ton and this is the maximum value of the
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concentrated mass, Mc. The rates of utilization of the equipment under each

sea condition are given on Tab. 7.3.

Table 7.3: Rates of utilization of the equipment

Condition - 1 2 3 4 5 6 7 8 9 10
hS m 1 1 1 1 1 2 2 2 2 2

Time years t1
5

t1
5

t1
5

t1
5

t1
5

t2
5

t2
5

t2
5

t2
5

t2
5

Conc. mass ton 0 Mc

4
Mc

2
3Mc

4
Mc 0 Mc

4
Mc

2
3Mc

4
Mc

Condition - 11 12 13 14 15 16 17 18 19 20
hS m 3 3 3 3 3 4 4 4 4 4

Time years t3
5

t3
5

t3
5

t3
5

t3
5

t4
5

t4
5

t4
5

t4
5

t4
5

Conc. mass ton 0 Mc

4
Mc

2
3Mc

4
Mc 0 Mc

4
Mc

2
3Mc

4
Mc

Condition - 21 22 23 24 25 26 27 28
hS m 5 5 5 6 6 6 7 8

Time years t5
3

t5
3

t5
3

t6
3

t6
3

t6
3

t7 t8

Conc. mass ton 0 Mc

4
Mc

2
0 Mc

4
Mc

2
0 0

After the definition of the expected working conditions the dynamic

simulations using a reduced order model for the finite element model was

accomplished. A realization of the time history of the stress cycles at the

critical point is shown on Fig. 7.7.

The steady-state part of the response is a stationary and ergodic process,

therefore only one realization is needed, since a convergence check is accom-

plished. An histogram of the values of stress at a critical point of the structure

obtained during the simulation is shown on Fig. 7.8.

Figure 7.7: Stress time history at
critical point

Figure 7.8: Histogram and Gaus-
sian pdf

The rainflow procedure proposed by Nieslony [28] was used to determine

the quantity of stress cycles per stress block. The obtained histogram and the

Weibull pdf for the stress ranges are shown on Fig. 7.9.

The simulation period was 1000s and it was considered to be representa-

tive of a 3 hours sea state for the given significant height.
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Figure 7.9: Histogram and Weibull pdf for entire simulation

The drilling tower is built from ten sections with different thickness

welded to each other and welded to the deck of the platform. Each section in

turn is built from four steel plates with same thickness, as shown on Fig. 4.2.

Despite of the recommendation for doing a non destructive examination after

the welding process, [6], there is always some level of misalignment between

the plates and the welds can not be considered to have its nominal thickness

all over its length. The thickness of the steel plates is not constant all over its

area as well.

Such variations on the parameters of the structure must be considered

during the evaluation of the fatigue resistance of the equipment otherwise the

obtained value may be to conservative. The thicknesses of the welds between

the sections of the tower will be considered a random variable ranging from

80% to 100% of the thickness of the plates. Due the uncertainty on the

manufacturing process of the steel plates the thickness of the plates within

the length of each finite element will be considered a random variable ranging

from 100% to 105% of the nominal thickness of the plates. A correlation length

of 0.01 between the thickness of the different welds and between the thickness

of the plates within each finite element has been considered.

During the Monte Carlo simulation for the evaluation of the mean value

and variance of the fatigue resistance it is necessary to simulate all the sea

and loading conditions for each trial of the random parameters. Since the

quantity of sea and loading conditions is significant it is necessary to reduce

the computational effort as much as possible.

The Tab. 7.4 shows a few statistics for the results obtained after the

Monte Carlo simulation.
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Table 7.4: Influence of the uncertainty

Fatigue Damage First Natural Frequency [Hz]

Min. Max Mean Std. Var. Min. Max Mean Std. Var.

0.57 1.04 0.71 0.15 2.99 3.01 3.00 0.004



8
Conclusions

In this work a computational model was developed to evaluate the structural

integrity of a drilling tower welded to an offshore platform. The base of the

tower is excited by the dynamics of the platform which in turn is excited by

the ocean waves.

The Pierson-Moskowitz spectrum has been used to identify the frequency

composition of the sea surface wave elevation. This spectrum can be used only

after the wind has blown constantly for a certain period of time and the sea

elevation surface becomes stationary. In this case the sea is referred to as

fully-developed. In this work it was considered that during the entire working

life the platform will be installed in an area whose sea surface elevation can

be simulated using this spectrum. For ships or platforms that can work on

different ocean areas and under different conditions alternative spectra may be

necessary.

The geometry of legs of the platform has been simplified to four cylinders.

In modern design of offshore platforms the legs can have rectangular cross

section and be connected by floating pontoons. For a better simulation of the

dynamics of the platform the interaction between sea water and these pontoons

have to be evaluated. This is a difficult computational task and in this case the

use of reduction-order models for the simulation of the sea surface elevation

would bring great benefits. A reduced-order model for the sea surface elevation

has been used and a good agreement between the results from the original and

reduced-order model has been obtained.

The Froude-Krilov forces were the only considered external loads acting

on the platform. In a more complex model additional loads as the drag forces

can be considered.

The platform was considered a rigid body and the tower was excited at

base due to the dynamic response of the platform. In case the flexibility of the

platform was included on the system the bending of the deck of the platform

is an additional source of deformation and consequently stresses to the welds

at the base of the tower.

An approximation to the dynamic response of the drilling tower has been
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obtained using a reduced-order finite element model. Since the external loads

are presented as a base excitation it was necessary to include prescribed modes

on the base of normal modes used to project the dynamics of the system.

Up to the author’s knowledge there are no publications about methods of

obtaining such prescribed modes. The results obtained using the prescribed

modes were compared with the ones obtained by the complete model and

good agreement has been obtained. The method is time consuming, even for

simplified models, which means that it is necessary to reduce the computational

cost using reduced-order models as much as possible.

From results shown on Tab. 7.2 one can note that the main contribution

for the fatigue damage is given by the significant wave heights of 3, 4 and 5m,

therefore in case of a design change only these heights need to be simulated

initially.

The choice of the period of simulation has a significant influence on the

results, thus only the interval of the stress time history where the results are

stable should be considered.

The lifting load was considered a concentrated mass at the free end of

the beam/drilling tower. Such simplification can have significant influence on

the obtained results. Jia [17] presented a method of calculating the fatigue

damage on offshore jacket structures and concluded that the inertia effects

of the structure, equipment mass in the structure and other non-structural

installations have a significant contribution to fatigue damage. Elshafey et al

[8] investigated the dynamic response of a scale model of an offshore jacket

structure both theoretically and experimentally. They investigated the effects

over dynamic response of changing the weights over the deck and noted that in

some cases resonance may occur. They investigated the influence of the peak

frequency of the wave spectra over the dynamic response as well. Therefore the

influence of the simplifications on the construction of the model of the system

should be carefully investigated.

At the realization of the time history of the stress cycles at the critical

point shown on Fig. 7.7 one can note that there are several small range cycles

along the time history. Such small range cycles are accounted for during the

fatigue damage evaluation procedure but have no significant contribution for

the damage.

It can be noted that the histogram shown on Fig. 7.8 can be approximated

by a Gaussian probability density function with zero mean. It should be clear

that this histogram is for the values of stress, peaks and valleys, and that stress

range distribution, used to calculate the fatigue damage, is shown on histogram

of Fig. 7.9 that was approximated to a Weibull probability density function.
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In future works it can be investigated whether the Weibull distribution can be

obtained from the Gaussian distribution.

It can be noted that the uncertainty on the on the thickness of the

weld and on the thickness of the plates can cause some calculated fatigue

damage to be above the acceptable level of 1 but has little influence on the

dynamics of the structure. Therefore during Monte Carlo simulation different

trials for the thickness of the weld and for the thickness of the plates can be

use without calculating the dynamic response of the tower again. It will reduce

the computational cost of the simulation.

In order to evaluate the fatigue resistance of a structural detail of a

drilling tower installed on an offshore platform it was necessary first evaluate

the sea surface elevation to be able to obtain the loads over the platform.

Such loads have been used to obtain the dynamics of the platform and

consequently the base excitation over the tower and its dynamic response.

From the deformation of the tower the stress time history at the structural

detail can be obtained and the fatigue resistance can be calculated. Despite of

this being a long path to obtain the desired result the results have shown to

be necessary to follow it.

The existing standards for fatigue resistance evaluation of offshore equip-

ments present simplified analysis procedures based on long-term stress range

distributions that depend on parameters that can not be determined a pri-

ori. Several different stress range distribution from other authors have been

presented in this work and in all of them two or more parameters have to be

determined. Some closed form solutions for obtaining these parameters have

been presented but in some cases they have to be obtained using some source

of curve fitting technique.

Some of the presented solutions are based on assumptions about the pro-

cess being narrow-banded. When the designer is investigating some structure

for the first time this kind of information is not available. When some kind of

joint probability function for the parameters is necessary it has to be evaluated

in some way.

Therefore the use of presented method is recommended when the designer

has no previous information about the behavior of all the components of the

system. Even initially using simplified models for the components such models

can be replaced by more sophisticated ones at latter stages of the design

process. The use of simplified models can provide valuable information about

the behavior of the system.

After obtaining the histogram for the stress ranges the adjust to a curve

is worthwhile. The histogram of stress ranges obtained for the studied detail
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has shown to be similar to a Weibull distribution. Such approximation can

be used within an optimization strategy to find a robust design, since the

parameters of the distribution can be obtained without a complete simulation

be accomplished. The Eqs. 5.20 and 5.20 are proposed as an alternative for

calculating the fatigue damage when the stress range distribution follows a

Weibull distribution.
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